3.2.38 \(\int \frac {x^5 (a+b \csc ^{-1}(c x))}{\sqrt {d+e x^2}} \, dx\) [138]

Optimal. Leaf size=321 \[ -\frac {b \left (19 c^2 d-9 e\right ) x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{120 c^3 e^2 \sqrt {c^2 x^2}}+\frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c e^2 \sqrt {c^2 x^2}}+\frac {d^2 \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {2 d \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^3}-\frac {8 b c d^{5/2} x \text {ArcTan}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{15 e^3 \sqrt {c^2 x^2}}+\frac {b \left (45 c^4 d^2-10 c^2 d e+9 e^2\right ) x \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {-1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{120 c^4 e^{5/2} \sqrt {c^2 x^2}} \]

[Out]

-2/3*d*(e*x^2+d)^(3/2)*(a+b*arccsc(c*x))/e^3+1/5*(e*x^2+d)^(5/2)*(a+b*arccsc(c*x))/e^3-8/15*b*c*d^(5/2)*x*arct
an((e*x^2+d)^(1/2)/d^(1/2)/(c^2*x^2-1)^(1/2))/e^3/(c^2*x^2)^(1/2)+1/120*b*(45*c^4*d^2-10*c^2*d*e+9*e^2)*x*arct
anh(e^(1/2)*(c^2*x^2-1)^(1/2)/c/(e*x^2+d)^(1/2))/c^4/e^(5/2)/(c^2*x^2)^(1/2)+1/20*b*x*(e*x^2+d)^(3/2)*(c^2*x^2
-1)^(1/2)/c/e^2/(c^2*x^2)^(1/2)+d^2*(a+b*arccsc(c*x))*(e*x^2+d)^(1/2)/e^3-1/120*b*(19*c^2*d-9*e)*x*(c^2*x^2-1)
^(1/2)*(e*x^2+d)^(1/2)/c^3/e^2/(c^2*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.72, antiderivative size = 321, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 12, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.522, Rules used = {272, 45, 5347, 12, 1629, 159, 163, 65, 223, 212, 95, 210} \begin {gather*} \frac {d^2 \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {2 d \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^3}-\frac {8 b c d^{5/2} x \text {ArcTan}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {c^2 x^2-1}}\right )}{15 e^3 \sqrt {c^2 x^2}}+\frac {b x \sqrt {c^2 x^2-1} \left (d+e x^2\right )^{3/2}}{20 c e^2 \sqrt {c^2 x^2}}+\frac {b x \left (45 c^4 d^2-10 c^2 d e+9 e^2\right ) \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {c^2 x^2-1}}{c \sqrt {d+e x^2}}\right )}{120 c^4 e^{5/2} \sqrt {c^2 x^2}}-\frac {b x \sqrt {c^2 x^2-1} \left (19 c^2 d-9 e\right ) \sqrt {d+e x^2}}{120 c^3 e^2 \sqrt {c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^5*(a + b*ArcCsc[c*x]))/Sqrt[d + e*x^2],x]

[Out]

-1/120*(b*(19*c^2*d - 9*e)*x*Sqrt[-1 + c^2*x^2]*Sqrt[d + e*x^2])/(c^3*e^2*Sqrt[c^2*x^2]) + (b*x*Sqrt[-1 + c^2*
x^2]*(d + e*x^2)^(3/2))/(20*c*e^2*Sqrt[c^2*x^2]) + (d^2*Sqrt[d + e*x^2]*(a + b*ArcCsc[c*x]))/e^3 - (2*d*(d + e
*x^2)^(3/2)*(a + b*ArcCsc[c*x]))/(3*e^3) + ((d + e*x^2)^(5/2)*(a + b*ArcCsc[c*x]))/(5*e^3) - (8*b*c*d^(5/2)*x*
ArcTan[Sqrt[d + e*x^2]/(Sqrt[d]*Sqrt[-1 + c^2*x^2])])/(15*e^3*Sqrt[c^2*x^2]) + (b*(45*c^4*d^2 - 10*c^2*d*e + 9
*e^2)*x*ArcTanh[(Sqrt[e]*Sqrt[-1 + c^2*x^2])/(c*Sqrt[d + e*x^2])])/(120*c^4*e^(5/2)*Sqrt[c^2*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 159

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1629

Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> With[
{q = Expon[Px, x], k = Coeff[Px, x, Expon[Px, x]]}, Simp[k*(a + b*x)^(m + q - 1)*(c + d*x)^(n + 1)*((e + f*x)^
(p + 1)/(d*f*b^(q - 1)*(m + n + p + q + 1))), x] + Dist[1/(d*f*b^q*(m + n + p + q + 1)), Int[(a + b*x)^m*(c +
d*x)^n*(e + f*x)^p*ExpandToSum[d*f*b^q*(m + n + p + q + 1)*Px - d*f*k*(m + n + p + q + 1)*(a + b*x)^q + k*(a +
 b*x)^(q - 2)*(a^2*d*f*(m + n + p + q + 1) - b*(b*c*e*(m + q - 1) + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*
(2*(m + q) + n + p) - b*(d*e*(m + q + n) + c*f*(m + q + p)))*x), x], x], x] /; NeQ[m + n + p + q + 1, 0]] /; F
reeQ[{a, b, c, d, e, f, m, n, p}, x] && PolyQ[Px, x]

Rule 5347

Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
 IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcCsc[c*x], u, x] + Dist[b*c*(x/Sqrt[c^2*x^2]), Int[SimplifyI
ntegrand[u/(x*Sqrt[c^2*x^2 - 1]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ((IGtQ[p, 0] &&  !(ILtQ
[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ[m + 2*p + 3, 0])) || (I
LtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))

Rubi steps

\begin {align*} \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\sqrt {d+e x^2}} \, dx &=\frac {d^2 \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {2 d \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^3}+\frac {(b c x) \int \frac {\sqrt {d+e x^2} \left (8 d^2-4 d e x^2+3 e^2 x^4\right )}{15 e^3 x \sqrt {-1+c^2 x^2}} \, dx}{\sqrt {c^2 x^2}}\\ &=\frac {d^2 \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {2 d \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^3}+\frac {(b c x) \int \frac {\sqrt {d+e x^2} \left (8 d^2-4 d e x^2+3 e^2 x^4\right )}{x \sqrt {-1+c^2 x^2}} \, dx}{15 e^3 \sqrt {c^2 x^2}}\\ &=\frac {d^2 \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {2 d \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^3}+\frac {(b c x) \text {Subst}\left (\int \frac {\sqrt {d+e x} \left (8 d^2-4 d e x+3 e^2 x^2\right )}{x \sqrt {-1+c^2 x}} \, dx,x,x^2\right )}{30 e^3 \sqrt {c^2 x^2}}\\ &=\frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c e^2 \sqrt {c^2 x^2}}+\frac {d^2 \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {2 d \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^3}+\frac {(b x) \text {Subst}\left (\int \frac {\sqrt {d+e x} \left (16 c^2 d^2 e-\frac {1}{2} \left (19 c^2 d-9 e\right ) e^2 x\right )}{x \sqrt {-1+c^2 x}} \, dx,x,x^2\right )}{60 c e^4 \sqrt {c^2 x^2}}\\ &=-\frac {b \left (19 c^2 d-9 e\right ) x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{120 c^3 e^2 \sqrt {c^2 x^2}}+\frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c e^2 \sqrt {c^2 x^2}}+\frac {d^2 \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {2 d \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^3}+\frac {(b x) \text {Subst}\left (\int \frac {16 c^4 d^3 e+\frac {1}{4} e^2 \left (45 c^4 d^2-10 c^2 d e+9 e^2\right ) x}{x \sqrt {-1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{60 c^3 e^4 \sqrt {c^2 x^2}}\\ &=-\frac {b \left (19 c^2 d-9 e\right ) x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{120 c^3 e^2 \sqrt {c^2 x^2}}+\frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c e^2 \sqrt {c^2 x^2}}+\frac {d^2 \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {2 d \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^3}+\frac {\left (4 b c d^3 x\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {-1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{15 e^3 \sqrt {c^2 x^2}}+\frac {\left (b \left (45 c^4 d^2-10 c^2 d e+9 e^2\right ) x\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{240 c^3 e^2 \sqrt {c^2 x^2}}\\ &=-\frac {b \left (19 c^2 d-9 e\right ) x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{120 c^3 e^2 \sqrt {c^2 x^2}}+\frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c e^2 \sqrt {c^2 x^2}}+\frac {d^2 \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {2 d \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^3}+\frac {\left (8 b c d^3 x\right ) \text {Subst}\left (\int \frac {1}{-d-x^2} \, dx,x,\frac {\sqrt {d+e x^2}}{\sqrt {-1+c^2 x^2}}\right )}{15 e^3 \sqrt {c^2 x^2}}+\frac {\left (b \left (45 c^4 d^2-10 c^2 d e+9 e^2\right ) x\right ) \text {Subst}\left (\int \frac {1}{\sqrt {d+\frac {e}{c^2}+\frac {e x^2}{c^2}}} \, dx,x,\sqrt {-1+c^2 x^2}\right )}{120 c^5 e^2 \sqrt {c^2 x^2}}\\ &=-\frac {b \left (19 c^2 d-9 e\right ) x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{120 c^3 e^2 \sqrt {c^2 x^2}}+\frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c e^2 \sqrt {c^2 x^2}}+\frac {d^2 \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {2 d \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^3}-\frac {8 b c d^{5/2} x \tan ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{15 e^3 \sqrt {c^2 x^2}}+\frac {\left (b \left (45 c^4 d^2-10 c^2 d e+9 e^2\right ) x\right ) \text {Subst}\left (\int \frac {1}{1-\frac {e x^2}{c^2}} \, dx,x,\frac {\sqrt {-1+c^2 x^2}}{\sqrt {d+e x^2}}\right )}{120 c^5 e^2 \sqrt {c^2 x^2}}\\ &=-\frac {b \left (19 c^2 d-9 e\right ) x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{120 c^3 e^2 \sqrt {c^2 x^2}}+\frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c e^2 \sqrt {c^2 x^2}}+\frac {d^2 \sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {2 d \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^3}-\frac {8 b c d^{5/2} x \tan ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{15 e^3 \sqrt {c^2 x^2}}+\frac {b \left (45 c^4 d^2-10 c^2 d e+9 e^2\right ) x \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {-1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{120 c^4 e^{5/2} \sqrt {c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.27, size = 259, normalized size = 0.81 \begin {gather*} \frac {\sqrt {d+e x^2} \left (8 a c^3 \left (8 d^2-4 d e x^2+3 e^2 x^4\right )+b e \sqrt {1-\frac {1}{c^2 x^2}} x \left (9 e+c^2 \left (-13 d+6 e x^2\right )\right )+8 b c^3 \left (8 d^2-4 d e x^2+3 e^2 x^4\right ) \csc ^{-1}(c x)\right )}{120 c^3 e^3}+\frac {b \sqrt {1-\frac {1}{c^2 x^2}} x \left (64 c^5 d^{5/2} \text {ArcTan}\left (\frac {\sqrt {d} \sqrt {-1+c^2 x^2}}{\sqrt {d+e x^2}}\right )+\sqrt {e} \left (45 c^4 d^2-10 c^2 d e+9 e^2\right ) \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {-1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )\right )}{120 c^4 e^3 \sqrt {-1+c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^5*(a + b*ArcCsc[c*x]))/Sqrt[d + e*x^2],x]

[Out]

(Sqrt[d + e*x^2]*(8*a*c^3*(8*d^2 - 4*d*e*x^2 + 3*e^2*x^4) + b*e*Sqrt[1 - 1/(c^2*x^2)]*x*(9*e + c^2*(-13*d + 6*
e*x^2)) + 8*b*c^3*(8*d^2 - 4*d*e*x^2 + 3*e^2*x^4)*ArcCsc[c*x]))/(120*c^3*e^3) + (b*Sqrt[1 - 1/(c^2*x^2)]*x*(64
*c^5*d^(5/2)*ArcTan[(Sqrt[d]*Sqrt[-1 + c^2*x^2])/Sqrt[d + e*x^2]] + Sqrt[e]*(45*c^4*d^2 - 10*c^2*d*e + 9*e^2)*
ArcTanh[(Sqrt[e]*Sqrt[-1 + c^2*x^2])/(c*Sqrt[d + e*x^2])]))/(120*c^4*e^3*Sqrt[-1 + c^2*x^2])

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {x^{5} \left (a +b \,\mathrm {arccsc}\left (c x \right )\right )}{\sqrt {e \,x^{2}+d}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^(1/2),x)

[Out]

int(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

1/15*(15*e^3*integrate(1/15*(3*c^2*x^7*e^3 - c^2*d*x^5*e^2 + 4*c^2*d^2*x^3*e + 8*c^2*d^3*x)*e^(-1/2*log(x^2*e
+ d) + 1/2*log(c*x + 1) + 1/2*log(c*x - 1))/(c^2*x^2*e^3 + (c^2*x^2*e^3 - e^3)*e^(log(c*x + 1) + log(c*x - 1))
 - e^3), x) + (3*x^4*arctan2(1, sqrt(c*x + 1)*sqrt(c*x - 1))*e^2 - 4*d*x^2*arctan2(1, sqrt(c*x + 1)*sqrt(c*x -
 1))*e + 8*d^2*arctan2(1, sqrt(c*x + 1)*sqrt(c*x - 1)))*sqrt(x^2*e + d))*b*e^(-3) + 1/15*(3*sqrt(x^2*e + d)*x^
4*e^(-1) - 4*sqrt(x^2*e + d)*d*x^2*e^(-2) + 8*sqrt(x^2*e + d)*d^2*e^(-3))*a

________________________________________________________________________________________

Fricas [A]
time = 1.34, size = 724, normalized size = 2.26 \begin {gather*} \left [\frac {{\left (64 \, b c^{5} \sqrt {-d} d^{2} \log \left (\frac {c^{4} d^{2} x^{4} - 8 \, c^{2} d^{2} x^{2} + x^{4} e^{2} + 4 \, {\left (c^{2} d x^{2} - x^{2} e - 2 \, d\right )} \sqrt {c^{2} x^{2} - 1} \sqrt {x^{2} e + d} \sqrt {-d} + 8 \, d^{2} - 2 \, {\left (3 \, c^{2} d x^{4} - 4 \, d x^{2}\right )} e}{x^{4}}\right ) + {\left (45 \, b c^{4} d^{2} - 10 \, b c^{2} d e + 9 \, b e^{2}\right )} e^{\frac {1}{2}} \log \left (c^{4} d^{2} + 4 \, {\left (c^{3} d + {\left (2 \, c^{3} x^{2} - c\right )} e\right )} \sqrt {c^{2} x^{2} - 1} \sqrt {x^{2} e + d} e^{\frac {1}{2}} + {\left (8 \, c^{4} x^{4} - 8 \, c^{2} x^{2} + 1\right )} e^{2} + 2 \, {\left (4 \, c^{4} d x^{2} - 3 \, c^{2} d\right )} e\right ) + 4 \, {\left (24 \, a c^{5} x^{4} e^{2} - 32 \, a c^{5} d x^{2} e + 64 \, a c^{5} d^{2} + 8 \, {\left (3 \, b c^{5} x^{4} e^{2} - 4 \, b c^{5} d x^{2} e + 8 \, b c^{5} d^{2}\right )} \operatorname {arccsc}\left (c x\right ) - {\left (13 \, b c^{3} d e - 3 \, {\left (2 \, b c^{3} x^{2} + 3 \, b c\right )} e^{2}\right )} \sqrt {c^{2} x^{2} - 1}\right )} \sqrt {x^{2} e + d}\right )} e^{\left (-3\right )}}{480 \, c^{5}}, -\frac {{\left (128 \, b c^{5} d^{\frac {5}{2}} \arctan \left (-\frac {{\left (c^{2} d x^{2} - x^{2} e - 2 \, d\right )} \sqrt {c^{2} x^{2} - 1} \sqrt {x^{2} e + d} \sqrt {d}}{2 \, {\left (c^{2} d^{2} x^{2} - d^{2} + {\left (c^{2} d x^{4} - d x^{2}\right )} e\right )}}\right ) - {\left (45 \, b c^{4} d^{2} - 10 \, b c^{2} d e + 9 \, b e^{2}\right )} e^{\frac {1}{2}} \log \left (c^{4} d^{2} + 4 \, {\left (c^{3} d + {\left (2 \, c^{3} x^{2} - c\right )} e\right )} \sqrt {c^{2} x^{2} - 1} \sqrt {x^{2} e + d} e^{\frac {1}{2}} + {\left (8 \, c^{4} x^{4} - 8 \, c^{2} x^{2} + 1\right )} e^{2} + 2 \, {\left (4 \, c^{4} d x^{2} - 3 \, c^{2} d\right )} e\right ) - 4 \, {\left (24 \, a c^{5} x^{4} e^{2} - 32 \, a c^{5} d x^{2} e + 64 \, a c^{5} d^{2} + 8 \, {\left (3 \, b c^{5} x^{4} e^{2} - 4 \, b c^{5} d x^{2} e + 8 \, b c^{5} d^{2}\right )} \operatorname {arccsc}\left (c x\right ) - {\left (13 \, b c^{3} d e - 3 \, {\left (2 \, b c^{3} x^{2} + 3 \, b c\right )} e^{2}\right )} \sqrt {c^{2} x^{2} - 1}\right )} \sqrt {x^{2} e + d}\right )} e^{\left (-3\right )}}{480 \, c^{5}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

[1/480*(64*b*c^5*sqrt(-d)*d^2*log((c^4*d^2*x^4 - 8*c^2*d^2*x^2 + x^4*e^2 + 4*(c^2*d*x^2 - x^2*e - 2*d)*sqrt(c^
2*x^2 - 1)*sqrt(x^2*e + d)*sqrt(-d) + 8*d^2 - 2*(3*c^2*d*x^4 - 4*d*x^2)*e)/x^4) + (45*b*c^4*d^2 - 10*b*c^2*d*e
 + 9*b*e^2)*e^(1/2)*log(c^4*d^2 + 4*(c^3*d + (2*c^3*x^2 - c)*e)*sqrt(c^2*x^2 - 1)*sqrt(x^2*e + d)*e^(1/2) + (8
*c^4*x^4 - 8*c^2*x^2 + 1)*e^2 + 2*(4*c^4*d*x^2 - 3*c^2*d)*e) + 4*(24*a*c^5*x^4*e^2 - 32*a*c^5*d*x^2*e + 64*a*c
^5*d^2 + 8*(3*b*c^5*x^4*e^2 - 4*b*c^5*d*x^2*e + 8*b*c^5*d^2)*arccsc(c*x) - (13*b*c^3*d*e - 3*(2*b*c^3*x^2 + 3*
b*c)*e^2)*sqrt(c^2*x^2 - 1))*sqrt(x^2*e + d))*e^(-3)/c^5, -1/480*(128*b*c^5*d^(5/2)*arctan(-1/2*(c^2*d*x^2 - x
^2*e - 2*d)*sqrt(c^2*x^2 - 1)*sqrt(x^2*e + d)*sqrt(d)/(c^2*d^2*x^2 - d^2 + (c^2*d*x^4 - d*x^2)*e)) - (45*b*c^4
*d^2 - 10*b*c^2*d*e + 9*b*e^2)*e^(1/2)*log(c^4*d^2 + 4*(c^3*d + (2*c^3*x^2 - c)*e)*sqrt(c^2*x^2 - 1)*sqrt(x^2*
e + d)*e^(1/2) + (8*c^4*x^4 - 8*c^2*x^2 + 1)*e^2 + 2*(4*c^4*d*x^2 - 3*c^2*d)*e) - 4*(24*a*c^5*x^4*e^2 - 32*a*c
^5*d*x^2*e + 64*a*c^5*d^2 + 8*(3*b*c^5*x^4*e^2 - 4*b*c^5*d*x^2*e + 8*b*c^5*d^2)*arccsc(c*x) - (13*b*c^3*d*e -
3*(2*b*c^3*x^2 + 3*b*c)*e^2)*sqrt(c^2*x^2 - 1))*sqrt(x^2*e + d))*e^(-3)/c^5]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{5} \left (a + b \operatorname {acsc}{\left (c x \right )}\right )}{\sqrt {d + e x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5*(a+b*acsc(c*x))/(e*x**2+d)**(1/2),x)

[Out]

Integral(x**5*(a + b*acsc(c*x))/sqrt(d + e*x**2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccsc(c*x) + a)*x^5/sqrt(e*x^2 + d), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^5\,\left (a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )\right )}{\sqrt {e\,x^2+d}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^5*(a + b*asin(1/(c*x))))/(d + e*x^2)^(1/2),x)

[Out]

int((x^5*(a + b*asin(1/(c*x))))/(d + e*x^2)^(1/2), x)

________________________________________________________________________________________